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Abstract

We explore using deep Convolutional Neural Networks (CNN) to predict
human attributes like skin tune, hair color and age from a face image. Using
a dataset of face images annotated with facial attributes, we train a linear
classifier for attribute prediction using representations extracted from a CNN
pre-trained for a general object classification task. Furthermore, we fine-tune
the pre-trained CNN using the attributes-annotated dataset and conduct a
set of experiments. We report on our experiments and discuss the achieved
results. When trained on 20% of CelebA dataset, our method achieves an
average accuracy of ∼ 89.9% predicting 40 different attributes per image.

Figure 1: Attribute predictions for sample test images. Only 4 out 40 pre-
dicted attributes are shown per image.
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1 Introduction

Predicting human face visual attributes like age, gender, hair color from face
images has several applications in face verification (where the task is to com-
pare the identify of a given image to a known identity), face identification
(where a given face image identity has to be inferred from a set of known
identities) and face retrieval (where face images similar to a given face are
retrieved from a database) [1]. This is though, as many computer vision
tasks, a challenging task because of the wide variations on images caused by
problems like occlusion, clutter and lighting.

Deep learning has repeatedly been shown to produce unprecedented results
on a variety of fields, and computer vision is not an exception. The success
of deep learning to a large extent is accounted to the emergence of large
datasets and the recent developments in processor technology (Graphical
Processing Units) [2]. Training deep CNNs hence, requires a plenty of data,
ample computational capacity and expertise knowledge; resources afforded
by few entities. Transfer learning techniques allow reusing models trained on
specific task to be used for another task with minimal effort [3]. These tech-
niques provide a means by which the masses of organizations, scientists and
individuals can leverage deep learning, by reusing pre-trained deep Neural
Networks after tuning them to their specific tasks with affordable efforts.

This work explores using off-the-shelf CNN pre-trained for a general ob-
ject classification task, to build a classifier that predicts facial attributes like
hair color, gender, etc. (figure 1) and reports the results of experimenting
with different variants of such system. Specifically, we use a subset of the
face-aligned version of CelebA dataset [4], whose images are labelled with 40
image-level attributes each, to develop three attribute prediction methods:

1. Using a copy of CNN-F introduced in [5] (VGG-F), pre-trained for the
general object classification task ILSVRC 2012 [6], to extract image rep-
resentations and use them to train a bank of 40 simple classifiers (linear
Support Vector Machines (SVM)) for attribute predictions. Each clas-
sifier is trained to predict the presence or absence of a single attribute
given an input face image.

2. Fine-tuning a variant of VGG-F CNN to predict a vector of 40 binary
values, from an input face image. Each value of the binary predicted
vector, corresponds to one attribute from the input face image.

3. Using image representations extracted from the fine-tuned network in
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2 above to train a bank of linear SVMs for attribute predictions.

The rest of this report is organized as follows. Section 2 presents the related
work. This is followed by a detailed description of the developed methods
in section 3. The different performed experiments and the obtained results
are presented and discussed in section 4. Section 5 concludes the report by
summarizing the performed work and the obtained results.

2 Background

Image representations extracted from deep CNN layers has been shown to
be a very power general representations, useful for a wide range of image
recognition tasks. Razavian et al [7] reported results comparable to the ones
reported by what were then state of the art methods in several recognition
tasks, using image representations extracted from the OverFeat CNN trained
to classify objects in ILSVR13. Their setup involved using the extracted
features to train a simple linear Support Vector Machine (SVM) for each
recognition task. As highlighted in [7], the simplicity of this approach and
its effectiveness suggest that it should be a baseline in every recognition task.

Depending on the locality of the extracted features, attribute recognition
methods can be grouped into two categories [4]. 1) Global attribute recogni-
tion methods that uses global features extracted from the whole input image.
These methods suffer from deformations of objects. 2) Local methods that
localize object parts first (e.g. eye location, lip location, etc.), usually using
hand-crafted features, and then use features extracted from these localized
object parts to train classifiers for the attribute recognition task [1]. The
success of these methods depends largely on its localization capability.

In [4], Liu et al proposed a global method for attribute prediction using
a cascade of three deep CNNs. The first two CNNs of the cascade are used
to localize the face region within the input image. The localized face region
is then used as input to the third CNN, whose last fully connected (FC) layer
responces are used as input features to a bank of Support Vector Machines
(SVMs) trained to predict the attribute values (one SVM per attribute). The
first two CNNs in the casecade were pre-trained to classify between a massive
number of general objects [6] and fine-tuned using face images labeled with
image-level attributes. The third CNN was pre-trained for identity classifi-
cation and fine-tuned using the same attribute-labeled face images dataset.

Ranjan et al [8] built a deep CNN framework that is trained end-to-end
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to simultaneously perform face detection, facial landmark localization, head
pose estimation and gender recognition on a given input image. Their net-
work architecture exploited the observation that, lower network layers are
good at detecting edges and corners and hence more suitable for localization
tasks like pose estimation and landmark localization, while higher network
layers capture higher semantic features and are therefore suited for the more
complex tasks of face detection and gender recognition. The network is com-
prised of two parts. The first part is a CNN based on the AlexNet for image
classification [9]. The second part of the network is a deep CNN that fuses
the outputs of three layers from the first CNN (a low layer output, a middle
layer output and a high layer output) into single fusion layer. From the fu-
sion layer, the 2nd network then branches into several branches of FC layers,
each corresponding to one of the different tasks. The multi-task network is
trained, end-to-end, using a total loss function compiled via the weighted
sum of the task-specific loss functions.

Our method builds on the ideas of [7] and [4] of extracting image representa-
tions from pre-trained CNNs and use that to train simple linear classifiers for
the prediction tasks. Further more we modify and fine-tune the pre-trained
CNN as described in section 3.4.2.

3 Approach

This section starts by presenting a formulation for the attribute prediction
task, followed by a description of the used dataset. The different attribute
prediction methods are then explained.

3.1 Problem formulation

The problem of predicting a set of attributes given an input image can be
formulated as follows:

• Given a dataset D of image-attributes pairs (xi, yi). D = {(x1, y1)...(xn, yn)}
where xi ∈ IRw×h×c and yi ∈ {−1, 1}d. w, h and c are the input image
width, height and number of channels. d is the number of attributes
assigned to a single image. D is split into two sets: Dtrain and Dtest.

• The goal is to use Dtrain to train a classifier f such that,
f(x; θ) = F (g(x; θ)) where f(x; θ) ∈ {−1, 1}d and θ represents the
network parameters. g(x; θ) ∈ IRd, is a discriminant function with d
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values, each, representing a confidence of the presence or absence of an
attribute in x.

• That maximizes the attribute prediction accuracy given by:

Accuracy =
1

|Dtest|
∑

(xj ,yj)∈Dtest

P [F (g(xj; θ)) == yj] (1)

Where P ∈ {1}d, Note [x == x] = 1 and [x == y] = 0.

• Using a loss function L(y, g(x; θ)) that measures how well y is
predicted by g(x; θ).

3.2 Dataset

The face-aligned version of the publicly-available Large-scale CelebFaces At-
tributes (CelebA) dataset dataset [4] was used in the experiments. CelebA
contains more than 200, 000 images, each is annotated with 40 facial at-
tributes and 5 landmark locations. The dataset images exhibit a wide range
of variations on identities, pose and clutter. Figure 1 shows some samples
from the CelebA dataset.

3.3 Data preprocessing

Unless otherwise specified, before used as input to the CNN, all the dataset
images were preprocessed as follows:

1. Randomly shuffle the dataset and split it into training and testing sets.

2. Calculate the training set mean image, by performing a pixel-wise av-
erage over the training set images. The mean training image of the
training set used in these experiments is shown in figure 2.

3. Resize each image to the VGG-F network expected input size; 224 ×
224× 3.

4. Subtract the mean image calculated in 1 above from each image in the
dataset (both training and testing sets).
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Figure 2: Training set mean image

3.4 Attributes prediction methods

For all the different prediction methods, a copy of CNN-F introduced by [5],
(VGG-F), was used. VGG-F was pre-trained for the classification task of
ILSVRC 2012 [6], where, for a given image, the network is trained to predict
the top n objects (out of possible 1000 general objects) on the image images.
Table 1 shows the VGG-F network architecture.



DD2427 Final Project Report Mohamed Abdulaziz Ali Haseeb

Table 1: Original VGG-F network architecture. Filter size is of the form
(wf , hf , df , cf ), where wf , hf and df are the width, height, depth of the filter
and cf is the number of filters. Output size is of the form (wo, ho, co), where
wo, ho are the width and height of the output and co is the number of output
channels. Pool size is of the form (wp, hp), where wp and hp are the width
and height of the pooling kernel. Stride and pad are of the shape (l, r, t, b),
where l, r, t and b correspond to either stride or pad on the left, right, top
or bottom directions.

Layer num-
ber/type/name

Filter (Pool)
size

Stride Pad Output
size

0/input/- - - - (224, 224, 3)
1/conv/conv1 (11, 11, 3, 64) (1, 1, 1, 1) (0, 0, 0, 0) (54, 54, 64)
2/relu/relu1 − (1, 1, 1, 1) (0, 0, 0, 0) (54, 54, 64)
3/lrn/norm1 − (1, 1, 1, 1) (0, 0, 0, 0) (54, 54, 64)

4/pool1/max pool (3, 3) (2, 2, 2, 2) (0, 1, 0, 1) (27, 27, 64)
5/conv/conv2 (5, 5, 64, 256) (1, 1, 1, 1) (2, 2, 2, 2) (27, 27, 256)
6/relu/relu2 − (1, 1, 1, 1) (0, 0, 0, 0) (27, 27, 256)
7/lrn/norm2 − (1, 1, 1, 1) (0, 0, 0, 0) (27, 27, 256)

8/pool2/max pool (3, 3) (2, 2, 2, 2) (0, 1, 0, 1) (13, 13, 256)
9/conv/conv3 (3, 3, 256, 256) (1, 1, 1, 1) (1, 1, 1, 1) (13, 13, 256)
10/relu/relu3 − (1, 1, 1, 1) (0, 0, 0, 0) (13, 13, 256)

11/conv/conv4 (3, 3, 256, 256) (1, 1, 1, 1) (1, 1, 1, 1) (13, 13, 256)
12/relu/relu4 − (1, 1, 1, 1) (0, 0, 0, 0) (13, 13, 256)

13/conv/conv5 (3, 3, 256, 256) (1, 1, 1, 1) (1, 1, 1, 1) (13, 13, 256)
14/relu/relu5 − (1, 1, 1, 1) (0, 0, 0, 0) (13, 13, 256)

15/pool3/max pool (3, 3) (2, 2, 2, 2) (0, 1, 0, 1) (6, 6, 256)
16/conv/fc1 (6, 6, 256, 4096) (1, 1, 1, 1) (0, 0, 0, 0) (1, 1, 4096)

17/relu/relu6 − (1, 1, 1, 1) (0, 0, 0, 0) (1, 1, 4096)
18/conv/fc2 (1, 1, 4096, 4096) (1, 1, 1, 1) (0, 0, 0, 0) (1, 1, 4096)

19/relu/relu7 − (1, 1, 1, 1) (0, 0, 0, 0) (1, 1, 4096)
20/conv/prediction (1, 1, 4096, 1000) (1, 1, 1, 1) (0, 0, 0, 0) (1, 1, 1000)

3.4.1 Pre-trained VGG-F + linear SVMs

Responses from one of the high level hidden layers of the VGG-F CNN pre-
trained for the ILSVRC 2012 classification task, were collected and used as
image representations(note, in the preprocessing phase, the mean image of
the original training data used for VGG-F CNN pre-training was subtracted
from the images before extracting the representations from the network, and
not the mean of the training data). Given a set of images x = {x1, x2...xn},
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with dimensions as described in 3.1, the extracted representation from layer
l will be of the form xl = {xl1, xl2...xln}, where xli is the CNN layer l response
for input image xi, x

l
i ∈ IRls and ls is layer l response (or output) size.

The extracted representations are then used to train a group of linear SVMs,
each predicting the presence or absence of a single attribute. The SVMs were
trained with Stochastic Gradient Descent (SDG), by minimizing a regular-
ized loss function of the form:

L(yj, xl;wj, bj) =
λ

2
||wj||2 +

n∑
i=1

max{0, 1− yji ((wj)Txli + bj)} (2)

Where wj and bj are the weights and bias terms for the classifier trained for
attribute j. yj = {y1, y2...yn}, yj ∈ {−1, 1}n are attribute’s j values corre-
sponding to each images x.

A total of 40 linear SVMs were trained.

3.4.2 Fine-tuned VGG-F

The VGG-F CNN is modified to output a binary vector ŷ corresponding
to the CNN predictions of the presence or absence of each one of the d at-
tributes, where ŷ = {ŷ1, ŷ2...ŷn} and ŷ ∈ {−1, 1}d. The modification was
done by removing the last fully connected layer (named prediction in table
1) and adding two new layers: a dropout layer (dout1) of rate 0.5 and a fully
connected layer (prediction) of output size d = 40. The modified VGG-F is
shown in table 2.

The fine-tuning was done by:

1. applying the preprocessing described in 3.3 to the dataset images, and

2. loading the pre-trained VGG-F CNN weights

3. adding the new layers

4. adding a logistic loss of the form:

L(y;xo) =
i=n∑
i=1

j=d∑
j=1

L(yij;x
o
ij) (3)

L(yij;x
o
ij) = −log 1

1 + e−yijx
o
ij

(4)
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Where xoij is the output layer’s neuron j response to input image xi,
and yij is the image xi ground truth label for attribute j.

5. and finally training the model with SGD updating all the weights of
the whole CNN.

During inference phase, given an image xi, predicting attribute’s j presence
(ŷij = 1) or absence (ŷij = −1) is performed using the below formula [10].

ŷij =

{
1 if xij > 0

−1 if xij < 0

Table 2: Modified VGG-F network architecture. Fine-tuned for 40 binary
attributes prediction.

Layer num-
ber/type/name

Filter (Pool)
size

Stride Pad Output
size

0/input/- - - - (224, 224, 3)
1/conv/conv1 (11, 11, 3, 64) (1, 1, 1, 1) (0, 0, 0, 0) (54, 54, 64)
2/relu/relu1 − (1, 1, 1, 1) (0, 0, 0, 0) (54, 54, 64)
3/lrn/norm1 − (1, 1, 1, 1) (0, 0, 0, 0) (54, 54, 64)

4/pool1/max pool (3, 3) (2, 2, 2, 2) (0, 1, 0, 1) (27, 27, 64)
5/conv/conv2 (5, 5, 64, 256) (1, 1, 1, 1) (2, 2, 2, 2) (27, 27, 256)
6/relu/relu2 − (1, 1, 1, 1) (0, 0, 0, 0) (27, 27, 256)
7/lrn/norm2 − (1, 1, 1, 1) (0, 0, 0, 0) (27, 27, 256)

8/pool2/max pool (3, 3) (2, 2, 2, 2) (0, 1, 0, 1) (13, 13, 256)
9/conv/conv3 (3, 3, 256, 256) (1, 1, 1, 1) (1, 1, 1, 1) (13, 13, 256)
10/relu/relu3 − (1, 1, 1, 1) (0, 0, 0, 0) (13, 13, 256)

11/conv/conv4 (3, 3, 256, 256) (1, 1, 1, 1) (1, 1, 1, 1) (13, 13, 256)
12/relu/relu4 − (1, 1, 1, 1) (0, 0, 0, 0) (13, 13, 256)

13/conv/conv5 (3, 3, 256, 256) (1, 1, 1, 1) (1, 1, 1, 1) (13, 13, 256)
14/relu/relu5 − (1, 1, 1, 1) (0, 0, 0, 0) (13, 13, 256)

15/pool3/max pool (3, 3) (2, 2, 2, 2) (0, 1, 0, 1) (6, 6, 256)
16/conv/fc1 (6, 6, 256, 4096) (1, 1, 1, 1) (0, 0, 0, 0) (1, 1, 4096)

17/relu/relu6 − (1, 1, 1, 1) (0, 0, 0, 0) (1, 1, 4096)
18/conv/fc2 (1, 1, 4096, 4096) (1, 1, 1, 1) (0, 0, 0, 0) (1, 1, 4096)

19/relu/relu7 − (1, 1, 1, 1) (0, 0, 0, 0) (1, 1, 4096)
20/dropout/dout1 − (1, 1, 1, 1) (0, 0, 0, 0) (1, 1, 4096)
21/conv/prediction (1, 1, 4096, 1000) (1, 1, 1, 1) (0, 0, 0, 0) (1, 1, 40)
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3.4.3 Fine-tuned VGG-F + linear SVMs

Similar to 3.4.1, image representations were extracted from the high level
hidden layers of the tuned VGG-F described in section 3.4.2, and used to
train a set of d linear SVMs.

4 Experiments and results

For testing the different prediction methods, a set of 36546 images from the
CelebA dataset was used (∼ 20% of the full CelebA dataset). 90% of the
dataset was used for training and rest for testing.

For both ”Pre-trained VGG-F + linear SVMs” method described in 3.4.1
and ”Fine-tuned VGG-F + linear SVMs” method described in 3.4.3, two
experiments were performed: 1) using image representations extracted from
layer 16 (fc1) and 2) using image representations extracted from layer 18
(fc2). Additionally, the same two experiments were repeated for a version
of ”Fine-tuned VGG-F + linear SVMs” without the dropout layer (dout1).
All the SVMs were trained using λ = 0.0001 and a total of 20 epocs. Fig-
ure 4 plots the prediction accuracy in the test set as a function of the layer
number from which image representations were extracted. The accuracy was
calculated using equation 1.

Beside verifying the ”Fine-tuned VGG-F” described in 3.4.2, two addi-
tional variants were verified: 1) A version of ”Fine-tuned VGG-F” without
the dropout layer (dout1) and 2) a version of ”Fine-tuned VGG-F” after
subtracting both the training set mean image and image mean of the dataset
used to pre-train the original VGG-F, from the dataset images. The reported
fine-tuning results are for a learning rate of 0.0001, batch size of 100 and dif-
ferent epoc numbers (60 epocs for some CNNs).

Table 3 summarizes the results for all the experiments. Figures 1 and 4
shows samples for correctly and wrongly predicted attributes.
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Figure 3: Prediction accuracy vs layer number

Figure 4: Sample test images with wrong predictions
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Table 3: Experiments results summary
Method Prediction

accuracy
Pre-trained VGG-F + linear SVMs, layer 16

representations
0.85192

Pre-trained VGG-F + linear SVMs, layer 18
representations

0.84264

Fine-tuned VGG-F + linear SVMs, layer 16
representations

0.87524

Fine-tuned VGG-F + linear SVMs, layer 18
representations

0.88211

Fine-tuned VGG-F + linear SVMs, no dropout, layer
16 representations

0.87147

Fine-tuned VGG-F + linear SVMs, no dropout, layer
18 representations

0.87588

Fine-tuned VGG-F 0.89859
Fine-tuned VGG-F (subtracting combined mean) 0.89746

Fine-tuned VGG-F, no dropout 0.8987

4.1 Results discussion

The results of training linear SVMs for attribute prediction using image rep-
resentations extracted from CNN, shows that given a CNN pre-trained on a
different task (than attribute prediction), the lower the layer from which im-
age representations are extracted the higher the prediction accuracy. While,
if a CNN tuned for the same (or similar) prediction task was used, the higher
the layer from which image representations are extracted the higher the pre-
diction accuracy. This is an expected result, since, higher CNN layers learns
features more specific to the task for which the CNN was trained. That
is said, the results obtained using the representation from the pre-trained
model and those when a fine-tuned model was used are comparable, and one
with limited computational resources can avoid fine-tuning the CNN and use
the representations of the pre-trained CNN with simple linear classifiers.

The ”Fine-tuned VGG-F method yielded the best prediction accuracy of
89.9% compared to 88.2% achieved by ”Fine-tuned VGG-F + linear SVMs”
using layer 18 representations . This can be due to the fact that the net-
work was trained to predict all the 40 attributes at the same time which
allowed the network to exploit more information, while each one of the linear
SVMs was trained to predict one attribute in isolation of the other attributes
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present on the image.

Placing the dropout layer before the last fully connect layer, to act as a
regularizer didn’t improve the prediction accuracy. More experiments that
adds dropout layers in the other fully connected layers is needed to have
better understanding of the impact.

Note, the fact that our method prediction accuracy of 89.9% exceeds that is
of the state-of-art method of [4] (which achieved 87%), is due to [4] using the
complete non-aligned version of CelebA dataset.

5 Conclusion

In this work, different methods of using pre-trained deep CNNs to train a fa-
cial attribute predictor were explored. Using image representations extracted
from pre-trained CNNs as well as representations extracted after CNN fine-
tuning were tested. Our results agrees with the related previous work, that,
image representations extracted from pre-trained CNNs are powerful general
representations, which when combined with simple linear classifiers yield to
accuracies comparable to methods tailored to the specific task at hand. Al-
though fine-tuning a pre-trained CNN bumps the prediction accuracy, using
the pre-trained CNN representations to train a simple linear classifiers might
be preferable considering the computational costs associated with fine-tuning
the pre-trained CNN.
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